ATOMIC ENERGY EDUCATION SOCIETY

Distant Learning Programme Class XI Subject: Physics

Work Sheet of Chapter: Unit & Measurement (Module 4/4)

1.	Which of the following physical quantity has the dimensions of [ML ² T ⁻³]?			
	(a)	Work	(b)	power
	(c)	Pressure	(d)	impulse
2.	Dimensions ML ⁻¹ T ⁻¹ are related to which physical quantity:			
	(a)	Work	(b)	Torque
	(c)	Energy	(d)	Coefficient of viscosity
3.	The dimensional formula for pressure gradient is			
	(a)	$[\mathrm{ML}^2\mathrm{T}^{\text{-}1}]$	(b)	$[M^0L^2T^{-2}]$
	(c)	[M-2L-2T0]	(d)	$[\mathrm{ML}^{-2}\mathrm{T}^{-2}]$
4.	Torque has the same dimensions as those of			
	(a)	Force (b) work (c)	kinet	ic energy (d) both 'b' and 'c'
5.	A force is given by: $F = a t + b t^2$ (where t is time). What are the dimensions of a and b?			
	(a)	$[MLT^{-3}]$ and $[MLT^{-4}]$	(b)	$[MLT^{-3}]$ and $[MLT^{-2}]$
	(c)	$[MLT^{-2}]$ and $[MLT^0]$	(d)	$[MLT^{-4}]$ and $[MLT]$
	If momentum (P), area (A) and time (T) are taken to be fundamental quantities, then what will be the dimensional formula of energy?			
7.	Find dimensions of a and b in relation $P = \frac{b-x^2}{at}$. P is power, x is distance and t is time.			
8.	Obtain dimensional formula for universal gravitational constant (G), Planck's constant (h) and universal			

method. 10. Centripetal force acting on any particle moving in circular path depends on its mass (m), velocity (v)

9. Convert: Gravitational constant (G) = $6.67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$ to dyne cm² gm⁻² by dimensional analysis

gas constant (R).

and radius of circular path(r), Establish dimensionally for relation of centripetal force.